::p_load(scatterPlotMatrix, parallelPlot, cluster, factoextra, tidyverse) pacman
In-class Exercise 9: Multivariate Analysis
1 Overview
2 Getting Started
3 Plotting Correlation Map
<- read_csv("data/wine_quality.csv") wine
ggplot(data = wine,
aes(x = type)) +
geom_bar()
<- wine %>%
whitewine filter(type == "white") %>%
select(c(1:11))
scatterPlotMatrix(whitewine,
corrPlotType = "Text",
distribType = 1,
width = 500,
height = 500,
rotateTitle = TRUE)
4 Plotting Ternary Chart
The 3 variables in ternary plot must add up to the total, i.e. they represent the same thing
5 Plotting Heatmap
Heatmaps can be very inefficient when there are a lot of observations. For large number of observations, better use paralell plot.
6 Plotting Parallel Plots
set.seed(123)
<- kmeans(whitewine, 4, nstart = 25)
kmeans4 print(kmeans4)
K-means clustering with 4 clusters of sizes 1719, 1444, 757, 978
Cluster means:
fixed acidity volatile acidity citric acid residual sugar chlorides
1 6.782403 0.2719372 0.3247469 5.348342 0.04324549
2 6.908172 0.2776939 0.3455402 7.780852 0.04919668
3 6.981506 0.2965786 0.3563540 9.705878 0.05227081
4 6.805112 0.2759356 0.3168814 3.607822 0.04012781
free sulfur dioxide total sulfur dioxide density pH sulphates
1 30.11635 121.1963 0.9931958 3.195829 0.4847935
2 42.31129 160.3061 0.9951215 3.193996 0.4940651
3 52.83421 206.8164 0.9965522 3.176975 0.5179392
4 20.52761 83.1411 0.9919192 3.175256 0.4707566
alcohol
1 10.833256
2 10.120392
3 9.611471
4 11.233930
Clustering vector:
[1] 2 1 4 3 3 4 1 2 1 1 4 1 4 2 2 1 4 4 2 1 4 4 1 2 1 3 2 1 1 1 1 4 4 1 2 1 2
[38] 1 2 2 2 2 2 2 2 2 3 3 2 2 2 1 4 1 1 3 3 2 4 1 1 2 2 4 1 1 1 2 4 1 3 3 3 4
[75] 4 1 4 4 1 1 1 2 2 3 2 2 2 3 2 2 2 3 1 1 2 3 2 4 4 2 3 2 2 2 3 1 2 2 2 3 2
[112] 3 3 2 2 4 1 4 3 3 4 1 1 1 2 2 1 3 2 2 4 3 3 3 3 2 1 2 4 4 4 2 1 4 4 1 2 4
[149] 4 1 2 2 1 4 4 3 3 1 1 1 1 2 4 3 3 2 3 4 2 1 1 4 4 1 2 2 4 2 1 2 2 3 2 3 3
[186] 3 2 1 1 3 3 2 1 1 3 3 3 3 3 3 3 3 3 1 1 2 1 1 4 2 4 1 1 1 1 2 2 2 2 2 2 2
[223] 1 2 1 2 3 3 3 2 1 3 3 3 3 3 3 3 1 2 3 4 4 3 2 3 1 4 4 1 3 3 2 1 2 2 4 4 1
[260] 4 1 2 4 3 2 2 2 2 2 2 2 2 2 1 3 2 2 4 4 1 1 1 3 3 3 2 3 3 3 3 3 2 3 2 2 2
[297] 2 3 2 1 4 4 4 2 2 2 2 2 1 2 4 2 2 2 2 1 1 1 1 4 4 1 1 1 3 3 3 2 3 4 1 1 4
[334] 1 4 4 1 2 1 2 2 1 1 2 2 1 4 2 1 2 2 1 1 1 3 3 3 2 2 2 2 4 1 3 4 1 2 2 2 4
[371] 2 2 3 2 4 4 1 4 2 1 4 2 2 2 1 4 1 3 1 3 3 4 1 4 2 2 4 1 2 4 1 2 1 3 2 2 1
[408] 1 1 4 2 2 4 4 2 2 4 3 4 1 1 3 3 3 2 3 3 3 4 3 3 4 3 2 1 4 3 3 3 1 4 1 1 3
[445] 2 4 2 1 1 1 2 1 2 1 1 1 4 1 3 3 1 2 2 4 2 1 2 4 2 3 2 3 4 1 1 3 1 1 2 2 2
[482] 1 1 2 3 1 1 4 2 2 4 4 2 2 1 2 3 2 2 3 3 2 3 3 2 2 1 2 2 2 2 2 1 4 1 2 2 2
[519] 4 4 1 1 4 4 4 1 4 1 1 1 1 2 2 2 2 2 2 2 4 3 2 3 2 2 2 2 2 4 1 3 2 4 1 2 1
[556] 4 2 1 2 2 2 1 2 1 2 4 4 2 2 2 3 1 2 2 1 3 3 2 1 1 3 1 2 4 1 4 2 1 1 1 1 1
[593] 2 1 1 1 2 1 1 4 2 1 1 1 1 1 2 2 2 4 1 4 1 1 1 1 4 3 3 1 3 2 1 4 1 1 2 3 3
[630] 4 2 2 1 3 2 1 1 2 3 3 1 3 3 2 2 2 2 2 3 3 3 3 3 1 2 1 4 1 3 3 4 1 2 4 2 1
[667] 3 2 2 3 3 4 2 1 3 3 3 4 4 4 2 2 2 2 2 3 1 3 3 1 1 3 3 2 3 3 4 3 3 3 3 1 4
[704] 1 1 4 3 2 1 4 2 1 1 3 3 2 3 2 2 1 2 2 1 4 1 1 1 4 2 2 1 3 4 2 3 1 2 3 2 1
[741] 4 4 1 2 2 1 3 2 2 2 2 2 2 3 1 1 2 2 2 1 2 2 3 1 2 1 3 4 1 1 1 2 2 2 1 1 4
[778] 3 2 2 4 3 2 2 3 1 1 1 1 1 1 4 2 4 2 2 3 2 1 4 2 3 3 2 1 2 3 3 3 3 3 1 2 2
[815] 3 1 4 1 1 1 4 3 1 1 4 2 2 1 4 4 1 2 1 4 1 1 2 2 2 1 1 2 2 1 1 1 2 4 2 1 1
[852] 2 1 2 1 1 2 2 2 2 1 3 2 1 2 1 1 2 2 4 2 2 1 4 4 1 1 1 1 1 1 1 1 1 3 1 2 4
[889] 2 4 2 1 1 1 1 4 3 4 4 3 2 1 3 3 2 4 4 1 2 3 1 1 1 4 4 4 1 1 1 1 2 2 2 3 2
[926] 4 4 2 2 1 4 3 3 3 3 3 4 1 3 3 3 3 4 1 1 1 3 2 4 4 1 1 4 1 1 1 1 4 4 2 2 1
[963] 2 1 2 4 3 2 4 4 4 1 2 4 1 1 1 3 2 4 4 2 4 4 2 1 2 2 2 1 2 4 3 4 2 2 4 2 2
[1000] 2 4 3 3 1 2 4 2 4 3 2 1 2 4 3 2 1 1 1 2 3 1 1 3 2 2 1 2 4 1 3 2 3 3 3 3 2
[1037] 4 4 1 4 1 4 1 3 4 4 1 4 4 1 2 1 4 1 4 1 1 3 1 2 1 3 3 3 2 1 2 1 4 2 2 1 1
[1074] 3 2 1 2 1 3 3 1 2 2 3 1 2 1 1 3 1 3 2 2 1 3 4 2 1 1 1 2 1 2 1 2 3 1 4 4 2
[1111] 4 4 2 4 4 4 4 3 4 1 1 1 4 1 1 2 2 4 4 1 2 1 2 1 1 2 2 2 1 4 4 2 1 1 1 3 2
[1148] 2 1 3 3 3 4 4 2 2 1 1 3 1 2 1 2 3 4 1 4 1 4 2 1 1 1 1 3 2 3 2 2 1 1 1 1 1
[1185] 1 3 2 1 2 4 1 1 1 1 3 2 1 1 1 4 4 4 3 4 4 3 2 3 1 1 4 2 2 4 4 2 4 3 1 4 3
[1222] 1 1 2 1 4 1 1 1 4 3 1 4 1 2 3 4 1 1 2 2 2 2 1 1 3 2 4 4 3 2 2 2 2 2 1 2 3
[1259] 3 3 3 2 2 3 4 2 1 2 1 3 2 1 2 1 3 1 2 1 1 2 1 2 2 2 2 1 2 1 1 4 4 3 4 4 4
[1296] 3 1 1 2 2 2 2 3 2 3 1 1 1 1 4 2 1 2 2 2 2 3 2 4 3 1 1 2 2 2 1 2 2 4 1 1 1
[1333] 3 2 1 3 2 3 3 1 1 2 1 2 2 1 2 2 2 4 1 1 3 3 2 2 3 2 1 1 2 3 1 4 2 1 4 1 3
[1370] 3 1 2 2 2 1 1 1 1 1 1 2 4 4 4 1 1 1 4 1 3 1 4 4 4 1 4 1 3 3 4 3 3 1 1 4 1
[1407] 4 4 3 1 4 4 2 1 1 4 1 3 1 1 1 4 1 3 1 1 1 2 4 4 1 4 4 4 2 4 3 4 3 3 2 1 1
[1444] 1 2 1 4 2 2 2 2 1 2 2 3 2 4 1 2 1 1 2 2 1 2 2 2 4 4 1 2 2 4 1 4 2 2 4 2 1
[1481] 2 1 3 4 1 1 4 2 3 3 1 4 3 2 3 3 4 1 4 2 1 2 1 1 1 1 3 2 2 1 1 1 1 2 1 1 2
[1518] 2 4 2 2 1 2 2 2 2 2 3 2 2 2 2 3 1 2 1 4 2 1 1 2 4 1 4 4 2 2 2 1 1 2 1 2 2
[1555] 2 2 2 2 1 4 2 1 1 2 1 1 2 1 3 2 2 3 2 1 1 3 4 1 2 3 1 4 1 2 3 2 2 3 2 1 2
[1592] 2 1 4 1 3 1 3 1 4 1 3 4 4 1 1 1 1 3 3 1 4 4 1 1 2 3 1 3 1 4 1 2 1 1 2 3 1
[1629] 1 4 1 1 1 1 3 1 2 2 3 1 2 2 1 2 1 2 2 4 4 2 1 3 1 2 2 1 4 2 3 3 3 3 1 2 2
[1666] 1 4 1 4 1 2 4 2 2 3 3 4 2 2 1 3 3 3 3 3 3 2 3 3 1 2 3 3 3 2 1 3 3 3 2 1 3
[1703] 1 2 2 1 2 2 2 2 4 1 2 1 1 2 1 1 2 4 2 3 2 2 1 2 4 3 1 1 1 3 1 1 3 2 4 3 4
[1740] 4 2 2 2 2 1 3 4 2 4 1 2 2 3 2 4 2 3 3 4 3 3 1 4 1 3 3 3 2 2 1 2 2 2 2 4 1
[1777] 2 2 2 2 2 3 2 4 1 2 1 2 1 3 2 1 2 3 1 2 1 1 2 2 3 4 2 2 3 1 1 3 1 3 2 1 4
[1814] 1 4 2 1 1 4 1 2 1 4 3 2 4 2 3 3 2 2 2 2 2 2 3 1 1 3 1 2 1 3 1 4 2 2 2 3 3
[1851] 2 4 1 1 2 3 2 2 2 3 2 3 1 3 1 1 3 1 2 2 2 2 2 2 2 2 2 4 3 4 3 4 3 3 1 4 1
[1888] 2 3 1 3 3 2 2 2 3 2 2 4 1 2 1 2 1 3 2 1 2 4 1 2 4 1 2 1 4 2 4 2 3 2 1 1 4
[1925] 4 4 4 2 3 2 3 3 4 2 4 2 3 2 4 2 3 2 3 3 3 2 2 3 1 2 3 2 1 2 3 2 4 4 3 4 4
[1962] 1 4 3 2 2 1 3 2 2 1 2 1 1 1 3 3 2 1 3 3 3 3 3 3 2 2 2 3 1 1 3 4 2 2 2 2 2
[1999] 2 3 2 2 2 2 2 2 2 4 2 4 4 2 2 1 4 4 1 4 1 1 2 2 3 2 3 2 4 2 2 3 1 2 4 3 1
[2036] 4 2 2 1 4 3 1 1 1 1 4 1 2 2 2 1 2 2 4 4 2 2 2 3 2 3 4 1 1 2 1 1 2 1 1 2 1
[2073] 2 3 2 1 1 3 1 1 1 4 1 1 2 2 4 2 1 2 2 2 4 1 1 2 1 2 2 2 2 4 3 1 2 1 3 2 2
[2110] 3 2 2 2 4 3 2 4 1 1 1 2 1 2 2 1 2 2 3 2 1 1 2 2 2 1 3 1 3 4 4 1 1 2 4 2 2
[2147] 1 1 4 4 1 1 4 4 3 2 4 4 1 4 1 4 1 4 1 2 2 3 3 3 3 3 1 2 3 3 1 1 2 1 2 1 2
[2184] 2 1 4 4 1 4 1 1 2 2 1 4 1 4 4 3 3 2 2 3 2 2 2 1 1 1 1 2 1 1 1 1 2 4 1 2 1
[2221] 1 2 2 2 2 2 2 2 1 2 1 2 4 2 4 1 3 2 2 1 2 3 2 2 3 1 2 2 4 3 3 1 2 3 2 1 1
[2258] 1 3 1 3 1 4 2 2 2 2 2 2 2 1 2 1 4 1 2 3 4 3 2 4 4 3 3 3 3 2 2 3 4 1 2 3 4
[2295] 1 2 2 3 1 1 1 1 3 1 2 2 1 2 1 1 2 1 1 4 1 2 1 2 2 4 1 2 1 2 3 1 1 1 1 2 3
[2332] 2 3 1 3 1 3 2 2 4 2 2 4 2 4 3 2 4 1 2 3 3 1 4 4 1 1 4 3 1 1 4 2 2 3 1 3 3
[2369] 2 2 1 3 4 4 3 2 3 4 3 3 3 2 1 4 1 2 2 2 4 4 1 2 1 1 3 3 3 4 4 4 4 1 3 1 1
[2406] 3 4 1 3 1 3 3 3 1 3 1 3 3 4 3 1 3 3 1 3 1 2 3 2 3 3 2 3 3 3 1 2 2 2 1 2 2
[2443] 3 3 3 3 3 1 1 3 2 2 1 1 3 3 2 2 3 2 2 4 4 2 1 2 2 1 4 1 2 2 4 1 4 1 2 4 3
[2480] 1 1 3 3 3 3 3 1 1 1 2 1 3 2 1 1 2 4 1 1 2 1 3 1 1 2 3 3 1 2 1 3 3 4 1 2 4
[2517] 2 3 4 3 2 1 2 2 2 2 1 1 1 2 2 2 2 2 4 2 1 1 1 1 2 2 2 1 1 2 2 1 3 3 1 3 1
[2554] 2 2 2 2 2 2 1 4 1 4 1 2 3 4 1 3 1 1 4 4 2 2 3 3 3 1 1 2 2 2 2 2 2 2 4 2 2
[2591] 1 2 2 2 1 2 3 1 3 3 1 3 1 1 1 4 2 3 3 4 2 3 1 1 4 1 1 1 1 2 2 1 1 1 4 2 1
[2628] 1 3 3 1 1 3 2 3 4 2 3 1 4 4 2 4 2 2 1 4 1 2 2 2 2 4 2 3 3 3 1 2 4 2 2 1 4
[2665] 4 1 2 1 1 2 2 2 1 4 1 1 4 2 1 1 1 2 1 1 1 4 1 3 2 1 1 1 2 1 1 1 2 4 2 1 4
[2702] 1 1 1 3 3 3 1 3 3 3 2 2 3 3 2 3 2 4 2 4 2 1 1 2 2 4 1 3 4 3 2 1 4 2 3 1 4
[2739] 1 4 2 1 2 4 4 4 2 1 2 1 2 1 1 4 4 3 3 4 4 1 2 2 2 1 2 1 4 2 1 2 3 1 1 4 1
[2776] 1 1 1 4 1 1 2 3 3 3 2 4 2 2 2 3 3 3 1 2 4 1 2 1 1 3 3 4 4 4 1 2 2 3 2 4 1
[2813] 1 2 4 4 1 4 2 1 1 3 2 4 2 2 3 2 2 2 2 2 4 1 1 2 3 2 4 4 4 4 4 4 4 4 4 4 2
[2850] 3 2 4 2 1 4 2 1 4 2 1 2 4 4 4 1 1 1 1 1 1 1 4 2 4 1 4 2 2 1 4 4 4 1 4 1 4
[2887] 4 4 4 1 2 2 3 2 4 2 3 3 4 2 4 4 2 4 1 2 3 4 4 4 2 2 4 3 4 4 1 1 4 1 4 3 1
[2924] 1 1 3 4 2 2 1 2 4 3 1 4 4 4 3 1 1 1 1 2 1 1 2 1 1 3 1 1 4 1 1 4 1 4 4 4 4
[2961] 1 1 4 1 1 1 1 1 2 4 2 1 1 1 1 2 1 1 1 1 1 4 3 2 4 1 1 1 4 3 2 2 1 1 1 1 1
[2998] 2 1 1 1 1 2 4 1 2 3 2 2 3 3 1 4 1 4 4 1 2 1 4 4 4 1 4 1 2 1 2 1 1 1 1 4 3
[3035] 2 4 3 2 1 3 1 2 2 1 1 4 1 2 1 3 3 3 2 1 4 1 4 1 3 4 2 2 1 2 3 1 3 1 1 4 1
[3072] 4 2 1 1 4 1 3 4 1 4 2 4 4 4 4 4 3 4 4 4 3 2 1 4 4 4 1 1 1 1 4 1 1 1 2 2 2
[3109] 2 3 1 4 1 1 1 1 4 4 2 4 3 1 1 4 1 2 1 4 4 1 2 3 1 1 1 3 1 1 1 1 3 4 1 1 1
[3146] 1 1 2 1 2 4 1 3 4 1 1 1 1 1 1 4 1 1 1 3 1 1 1 4 1 2 4 1 1 1 2 4 2 4 1 4 1
[3183] 1 4 4 1 4 1 1 2 1 2 1 1 4 1 1 1 1 1 2 1 4 1 2 2 4 1 2 2 1 2 1 2 4 4 1 1 1
[3220] 4 4 4 1 2 2 4 1 3 3 1 2 1 4 4 1 2 2 2 1 4 1 1 1 4 4 1 1 2 2 2 1 2 1 1 3 3
[3257] 3 3 3 3 3 4 3 4 3 2 1 2 1 3 1 4 4 1 1 4 2 1 3 1 1 1 1 2 1 1 1 1 2 3 4 4 3
[3294] 4 1 3 3 3 1 1 4 4 4 4 2 4 2 3 1 4 1 2 4 4 3 4 4 1 1 2 1 4 1 4 1 1 2 4 1 1
[3331] 2 2 2 2 4 3 3 3 4 4 1 4 1 3 3 3 3 2 4 4 1 4 4 4 1 1 2 4 4 4 4 4 1 4 4 4 1
[3368] 1 2 1 1 1 2 1 2 1 2 3 2 3 1 1 1 2 2 1 2 3 4 4 1 1 4 1 3 3 1 3 3 4 1 1 1 1
[3405] 4 1 4 3 3 1 2 1 2 3 2 2 3 4 3 2 2 4 1 2 1 2 2 2 1 2 2 2 1 4 4 4 4 1 3 1 1
[3442] 1 4 1 3 1 2 4 1 1 1 1 1 4 1 4 2 2 1 2 1 3 1 1 2 1 1 3 4 2 3 1 1 4 3 2 4 2
[3479] 2 4 4 1 4 4 4 1 4 3 4 4 2 1 1 1 1 1 2 2 1 1 1 1 2 4 1 1 2 1 2 2 2 4 1 4 4
[3516] 4 2 1 1 1 3 2 2 3 1 1 1 2 4 1 2 2 4 2 2 2 4 1 1 4 4 1 2 2 2 3 2 3 1 2 1 1
[3553] 1 1 4 1 1 4 1 4 4 4 2 4 4 4 1 4 4 4 4 4 1 4 1 1 2 1 1 4 2 1 4 4 4 1 2 1 1
[3590] 1 1 2 2 2 1 1 1 2 2 3 4 1 1 1 4 2 2 4 2 2 2 4 1 2 2 4 3 1 1 1 2 1 4 1 4 3
[3627] 1 3 2 2 1 1 1 1 2 4 4 1 4 4 1 2 2 1 1 2 4 4 1 1 1 3 1 3 1 1 3 1 2 1 1 2 4
[3664] 2 2 1 2 1 4 1 2 4 4 4 1 2 4 2 1 1 3 1 1 3 1 3 2 4 3 1 2 1 1 1 1 2 1 3 4 2
[3701] 2 1 2 2 2 2 4 1 3 2 4 2 2 3 4 3 2 1 1 3 2 1 1 2 1 1 1 2 4 1 3 2 1 1 1 4 4
[3738] 1 1 2 2 2 2 2 2 2 1 3 1 2 2 1 2 2 1 1 1 2 2 1 1 4 4 4 1 3 3 3 1 3 1 1 1 1
[3775] 3 1 1 1 1 4 3 1 4 3 1 4 3 3 3 3 3 3 1 2 1 1 4 4 1 2 4 4 1 1 4 4 4 1 1 1 2
[3812] 2 1 2 2 1 1 1 1 1 1 2 3 3 1 4 1 4 1 4 1 1 1 1 2 1 1 1 2 1 4 3 1 1 4 2 1 2
[3849] 4 4 1 1 4 1 1 2 4 1 1 3 3 2 3 3 4 1 1 3 3 2 2 3 3 2 3 1 2 4 2 4 1 1 1 2 1
[3886] 4 2 4 1 1 4 1 1 4 1 4 2 2 1 1 4 4 4 4 1 4 4 4 1 1 2 1 4 1 1 1 2 3 1 1 1 2
[3923] 4 1 1 4 4 1 2 2 4 1 1 4 4 3 1 2 4 2 2 2 1 1 2 2 1 2 1 2 2 2 4 1 2 4 1 4 1
[3960] 1 2 2 1 1 2 4 1 3 3 1 2 1 4 3 3 2 1 1 3 3 2 2 2 1 1 1 1 3 1 1 3 1 4 1 1 1
[3997] 1 2 1 1 1 1 4 1 1 1 4 1 4 2 1 2 1 2 3 4 2 1 3 4 4 1 2 2 2 4 2 2 4 1 1 1 1
[4034] 1 1 2 2 2 1 1 3 2 1 1 1 1 2 1 1 4 1 4 2 1 2 4 1 1 1 4 4 4 1 1 4 1 2 2 2 1
[4071] 2 4 2 1 4 1 1 1 1 4 1 1 2 2 4 4 4 1 4 1 2 4 1 4 4 4 1 4 1 1 4 2 2 4 4 1 2
[4108] 2 1 2 3 4 4 4 1 4 2 2 1 2 1 2 2 4 4 2 2 3 3 4 1 3 3 1 4 1 1 3 4 2 2 2 1 1
[4145] 2 2 1 2 1 4 3 3 1 3 3 3 3 2 2 2 2 2 2 1 1 4 2 1 1 1 2 1 2 4 2 2 2 1 1 3 1
[4182] 4 2 4 4 3 4 1 1 1 4 1 4 4 4 4 4 2 2 4 4 4 1 2 1 4 2 1 4 4 1 3 2 4 3 3 3 1
[4219] 2 3 4 1 1 4 4 3 2 4 3 1 1 4 4 1 1 1 1 4 1 4 1 2 2 4 1 1 4 1 1 2 4 4 4 4 1
[4256] 1 1 1 1 1 2 1 2 2 1 2 1 1 2 3 2 3 1 1 1 1 1 2 4 1 1 1 1 4 4 4 4 1 4 1 1 3
[4293] 1 3 1 3 1 1 1 2 2 2 3 1 1 1 1 1 4 1 2 1 1 4 1 1 4 2 1 1 3 2 1 1 1 2 2 2 2
[4330] 2 2 2 2 2 2 2 2 2 2 4 2 1 2 1 1 1 1 2 2 3 4 1 2 2 2 1 2 3 2 3 2 1 1 1 1 2
[4367] 1 1 1 1 1 4 1 4 2 3 1 4 1 1 2 2 1 4 2 2 2 4 4 1 2 3 2 2 2 2 2 2 2 2 2 1 2
[4404] 3 3 3 1 4 3 1 2 4 1 4 1 1 2 1 1 1 1 1 1 1 1 1 1 3 2 2 2 4 4 3 2 2 4 2 1 1
[4441] 2 1 2 1 1 1 1 4 1 2 1 3 2 4 2 2 2 2 1 1 2 2 1 1 1 1 2 2 4 1 4 4 4 1 1 1 1
[4478] 2 2 1 1 2 2 1 1 4 4 4 1 1 1 4 4 2 4 3 4 2 1 4 2 2 2 1 1 2 1 4 2 4 2 1 1 4
[4515] 3 1 4 4 4 2 3 3 4 2 2 2 3 4 4 2 2 2 1 1 1 2 2 4 1 4 1 1 4 4 1 1 4 4 3 4 4
[4552] 1 1 1 1 4 1 3 1 1 1 4 1 1 1 2 2 2 1 1 4 4 4 4 1 1 4 4 4 1 1 1 2 2 1 2 1 1
[4589] 1 1 2 3 2 1 1 1 1 4 1 4 1 1 2 1 2 4 1 2 4 4 4 4 2 2 2 1 4 1 1 3 1 4 1 1 4
[4626] 2 3 4 4 4 1 1 3 3 1 1 2 1 2 3 1 1 4 3 1 2 4 1 3 4 4 1 3 4 2 2 2 2 1 4 4 2
[4663] 1 1 1 1 3 1 1 1 2 2 2 1 2 2 1 1 2 2 1 4 4 1 3 1 1 2 2 2 2 2 2 2 2 1 4 1 1
[4700] 2 2 2 2 4 3 1 1 1 1 2 1 1 1 4 1 4 4 1 1 4 4 4 1 2 4 1 4 1 1 4 1 2 2 1 4 4
[4737] 4 1 1 4 3 1 1 2 4 3 1 4 2 2 2 3 4 1 1 4 1 1 1 1 1 1 4 1 1 4 1 2 2 2 2 2 3
[4774] 4 1 1 1 1 1 4 1 2 1 1 2 4 1 1 2 1 1 1 1 2 2 2 2 4 1 1 1 2 1 1 4 4 1 1 4 2
[4811] 2 4 1 2 1 1 2 1 4 1 2 1 2 1 2 1 1 4 2 4 1 1 1 4 4 1 4 3 1 4 1 3 4 2 2 4 2
[4848] 1 2 2 2 2 1 4 4 2 2 1 2 1 1 4 4 4 2 4 1 4 1 4 1 4 2 1 1 4 1 4 4 2 2 1 2 2
[4885] 2 2 1 4 1 1 4 1 1 4 2 1 1 4
Within cluster sum of squares by cluster:
[1] 462118.7 579703.3 681403.3 357903.9
(between_SS / total_SS = 80.0 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"
fviz_cluster(kmeans4, data=whitewine)
<- whitewine %>%
whitewine mutate(Cluster = kmeans4$cluster)
$Cluster <- as_factor(whitewine$Cluster) whitewine
%>%
whitewine parallelPlot(refColumnDim = "Cluster",
width = 300,
height = 250,
rotateTitle = TRUE)